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Abstract. We study the intermittent behavior of the energy decay and the linear magnetic response of
a glassy system during isothermal aging after a deep thermal quench, using the Edward-Anderson spin
glass model as a paradigmatic example. The large intermittent changes in the two observables occur in a
correlated fashion and through irreversible bursts, ‘quakes’, which punctuate reversible and equilibrium-
like fluctuations of zero average. The temporal distribution of the quakes is a Poisson distribution with
an average growing logarithmically on time, indicating that the quakes are triggered by record sized
fluctuations. As the drift of an aging system is to a good approximation subordinated to the quakes,
simple analytical expressions [Sibani et al. Phys Rev B 74, 224407 (2006)] are available for the time and
age dependence of the average response and average energy. These expressions are shown to capture the
time dependencies of the EA simulation results. Finally, we argue that whenever the changes of the linear
response function and of its conjugate autocorrelation function follow from the same intermittent events a
fluctuation-dissipation-like relation can arise between the two in off-equilibrium aging.

PACS. 65.60.+a Thermal properties of amorphous solids and glasses – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 61.43.Fs Glasses – 75.10.Nr Spin-glass and other random
models

1 Motivation

In noise spectra from mesoscopic aging systems, re-
versible fluctuations are punctuated by rare and large,
so called intermittent, events [1–6], which arguably sig-
nal switches from one metastable configuration to an-
other [7,8]. The intermittent events usually appear as
an exponential tail in the Probability Density Function
(PDF) of the fluctuations. The central part of the PDF
describes equilibrium-like behavior with its zero-centered
Gaussian shape. Exploiting this information can add new
twists to long debated issues as the multiscale nature of
glassy dynamics and the associated memory behavior.

A record dynamics scenario for aging [8–10] builds on
two main assumptions: (i) record sized energy fluctuations
within metastable domains trigger irreversible intermit-
tent events, or quakes ; (ii) these, in turn, control all sig-
nificant physical changes, e.g. heat release, configurational
decorrelation and linear magnetic response. In brief, all
important changes are considered to be subordinated to
the quakes, with the latter triggered by energy fluctua-
tions of record size. Combining the information from the
equilibrium-like fluctuations with non-thermal properties,
e.g. irreversible energy losses, leads to testable predictions
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for the time and temperature dependencies of the fluctu-
ation spectra which have been confirmed in a number of
cases [8,11–16].

While macroscopic (average) linear response functions
have long been the tool of choice for probing aging in mag-
netic systems, [17–21], the predictions of record dynamics
have so far only been tested for experimental Thermore-
manent Magnetization (TRM) spin glass data [16]. Sim-
ulations offer certain advantages over experiments: it is
possible to simulate an instantaneous quench, simply by
choosing a ‘random’, i.e. high temperature, initial con-
dition. Notably, an instantaneous initial quench leads to
the ‘full aging’ [20], scaling behavior simply explained in
record dynamics; secondly, the statistical analysis is con-
siderably simplified when thousands of independent traces
can be generated; lastly, temporal correlations between
the intermittent changes of the magnetization and the en-
ergy can be extracted.

The Edwards-Anderson (EA) spin-glass model used in
this work is a paradigmatic example of an aging system.
Its macroscopic (average) magnetic response and autocor-
relation decay have been thoroughly investigated [22–25]
and its mesoscopic fluctuations properties have attracted
some recent attention [8,13,26]. Here, data from extensive
simulations are analyzed with focus on the intermittency
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of the energy and Zero Field Cooled Magnetization
(ZFCM) fluctuations We confirm that quakes carry the
net drift of the energy [8] and correlate strongly with
the large intermittent magnetization fluctuations carry-
ing the net change of the linear response. The idea [8,10]
that quakes have a Poisson distribution with a logarith-
mic time dependence is derived from record statistics and
is central to the theory. To verify it empirically, we con-
sider the temporal statistics of the difference of ‘logarith-
mic waiting times’ log(tq)− log(tq−1), where tq marks the
occurence of the qth quake in a given trace. For the above
Poisson distribution, these logarithmic differences are ex-
ponentially distributed. General mathematical arguments
lead to eigenvalue expansions for the dependence of the av-
erage energy and linear response on the number of quakes,
and then, via the subordination hypothesis, to power-law
expansions for the time dependences of the same quanti-
ties [13,16]. The expansions are tested below against the
EA model numerical simulation results. The origin of ap-
proximate off-equilibrium Fluctuation-Dissipation like re-
lations is discussed in the last section from the point of
view of record dynamics.

Finally, a notational issue: as in reference [16], the vari-
able t generically denotes the time elapsed from the initial
quench, i.e. the system age. The external field is switched
on at time t = tw, and tobs = t − tw denotes the obser-
vation time, a quantity called t in references [8,13] and in
many experimental papers, e.g. [27,20]. Unless otherwise
stated, we denote the average energy and magnetization
by µe and µZFCM , and reserve the symbols e and M for
the corresponding fluctuating quantities measured in the
simulations. The simulation temperature is denoted by T .

2 Model and simulation methods

In the Edwards-Anderson model, N Ising variables, σi =
±1, are placed on a cubic lattice with toroidal boundary
conditions. Their interaction energy is

E = −1
2

N∑

i,j

σiσjJij − H

N∑

i

σi, (1)

where
∑

i σi = M is the magnetization and H is the mag-
netic field. The non-zero elements of the symmetric inter-
action matrix Jij connect neighboring sites on the lattice.
The interactions are drawn from a Gaussian distribution
with zero average and unit variance, a choice setting the
scale for both temperature and magnetic field.

In the simulations, we use system size N = 163 and
collect the statistics of energy and magnetization changes
from several thousands of independent trajectories, each
corresponding to a different realization of the Jij ’s. Af-
ter the initial quench, aging procedes isothermally in zero
field untill time t = tw, where a small magnetic field
H = 0.1 is instantaneously turned on. Isothermal simu-
lations lasting up to age t = 100 tw are carried out for
tw = 50, 100, 200, 500 and 1000 at temperatures T =
0.1, 0.2, . . .0.8. The simulation engine utilizes the Wait-
ing Time Method [15,28] a rejectionless or ‘event driven’

algorithm which operates with an ‘intrinsic’ time, loosely
corresponding to a sweep of the Metropolis algorithm. Un-
like the Metropolis algorithm, the WTM can follow spatio-
temporal patterns on very short time scales, a property
advantageous for intermittency studies.

3 Simulation results

In this section, simulation results are presented together
with some relevant theoretical considerations. The first
subsection deals with the distribution of energy and mag-
netization changes, δE and δM , occurring over small inter-
vals δt. The Probability Density Function (PDF) of these
quantities characterizes intermittency in the EA model in
a simple and direct way. In the second subsection, the
quakes are (approximately) identified within each data
stream, and the temporal aspects of their distribution are
studied. In the third and last subsection, the average lin-
ear response and average energy obtained from the simu-
lations are compared to analytical predictions which are
based on the temporal distribution of the quakes.

3.1 Energy and magnetization fluctuation statistics

For a first statistical description of the energy and the
ZFCM fluctuations, energy and magnetization changes δE
and δM occurring over small intervals δt are sampled dur-
ing the time interval [1000, 3000]. The left panel of Fig-
ure 1 shows the PDF of the magnetic fluctuations (blue
circles) on a log scale. The (black) line is the fit to a zero-
centered Gaussian obtained using data within the interval
−80 < δM < 50. The distribution of the remaining large
positive magnetization changes is seen to have exponential
character. The same runs are used to collect the PDF of
the energy fluctuations, shown in the right panel of Fig-
ure 1 (lower data set, blue circles). Again, we see a com-
bination of a zero centered Gaussian and an intermittent
exponential tail. The full line is a fit to the zero centered
Gaussian in the interval −5 < δE < 20.

As intermittent fluctuations are rare, the temporal cor-
relation between intermittent energy and ZFC magneti-
zation changes is best observed using conditional PDF’s
(upper curve, red squares). The conditional PDF shown
only includes those δE values which either fall in the same
or the preceding interval of width δt as magnetic fluctua-
tions above the threshold δM = 50. In the left panel of the
figure, the threshold is seen to be near the boundary be-
tween reversible and intermittent magnetization changes.
Note how the Gaussian parts of the full and of the con-
ditional PDFs nearly coincide, while the corresponding
intermittent tails differ. The tail of the conditional PDF
is strongly enhanced (roughly, between 10 and 100 times)
when only fluctuations near a large magnetization change
are included in the count. A similar situation is observed
at any low temperatures.

Figure 2 details the dependence of the PDF of the
magnetization fluctuations on δt and T : the three PDFs
shown in the left panel of Figure 2 as green circles, blue
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Fig. 1. (Color on line) The left panel shows the PDF (blue circles) of the magnetization changes δM occurring over intervals
of length δt = 20 during isothermal simulations at temperature T = 0.4. The statistics is based on 2× 105 data points obtained
in the age interval [1000, 3000] using 2000 independent trajectories. The zero average Gaussian (black line) fits data points with
−80 < δM < 50. The right panel shows the PDF of the energy changes (blue circles), and a Gaussian fit of the positive energy
fluctuations (black line). The red squares pertain to the subset of energy changes occurring in the immediate vicinity of large
(δM > 50) magnetization changes. All data are obtained from the same set of trajectories as those shown in the left panel.
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Fig. 2. (Color on line) The left panel depicts the PDF of the magnetization changes δM over intervals of length δt. The
simulation temperature is T = 0.4. Green circles, blue squares and magenta diamonds correspond to δt = 20, 40 and 60,
respectively. The data are collected in the interval [1000, 3000]. In order of increasing δt, the statistics is based on 105, .5× 105

and .33×105 data points. The full line is a fit of all data with −80 < δM < 50 to a Gaussian centered at zero. For δM > 50 the
PDF clearly deviates from a Gaussian shape. The intermittent tail grows with δt and fully determines the average change in
the ZFC magnetization. The insert shows dM , averaged over tobs, versus δt. The right panel shows the variance of the (fitted)
Gaussians as a function of the reduced temperature T/Tg.

squares and magenta diamonds are obtained in the inter-
val [1000, 3000], for T = 0.4 and for δt = 20, 40 and 60,
respectively. The black line is a zero centered Gaussian fit-
ted to the PDF in the range −80 < δM < 10. The fit is ob-
tained by optimizing the variance of the Gaussian distribu-
tion, σ2

G. The latter quantity should not be confused with
the variance of the full distribution, which is much larger
and heavily influenced by the tail events excluded from
the Gaussian fit. Importantly, since the Gaussian part of
the PDF is independent of δt quasi-equilibrium ZFCM
fluctuations at T = 0.4 can be treated as uncorrelated for
times larger than δt = 20. Secondly, since the Gaussian is
centered at zero, any changes in the average magnetiza-

tion are exclusively due to the intermittent events. Similar
conclusions were reached for the spin-glass TRM magneti-
zation [16], and for the energy outflow in the EA model [8],
and in a p-spin model with no quenched randomness [15].
The insert describes the dependence on δt of the magneti-
zation change 〈δM〉 averaged over the observation interval
[1000, 3000]. E.g. the data point corresponding to δt = 20
depicts the average of the lowest PDF plotted in the main
figure. The right panel of Figure 2 shows a plot of the ratio
σ2

G/T versus T for the Gaussian part of the magnetic fluc-
tuations. As the Fluctuation-Dissipation Theorem (FDT)
applies to the equilibrium-like part of the dynamics, the
ordinate can be interpreted as the (gedanken) linear
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magnetic susceptibility of metastable configurations. The
overall shape of the curve is reminiscent of the experimen-
tal T dependence of the ZFCM below Tg [29].

3.2 Temporal distribution of intermittent events

The PDF of intermittent fluctuations in the EA model
scales with the ratio δt/t, where t is the age of the sys-
tem at the beginning of the sampling interval [8]. The rate
of quakes accordingly decays as the inverse of the age, in
agreement with the claim that the the number of indepen-
dent quakes in an interval (t, t′) has a Poisson distribution
with average 〈nI〉 = α log(t/t′) The parameter α charac-
terizing the average is interpreted as the number of ther-
malized domains contributing in parallel to the fluctuation
statistics. This quantity is expected to be temperature
independent and linearly dependent on system size [15].
Using that the differences τq = log(tq) − log(tq−1) =
log(tq/tq−1) are independent random numbers, all expo-
nentially distributed with the same average 〈τq〉 = 1/α,
identifying the times tq, q = 1, 2, . . . at which the quakes
occur allows one to check the temporal aspects of statistics
(as opposed to the distribution of quake sizes).

The identification entails some challenges of statisti-
cal and patter-recognition nature. The residence times
tq − tq−1 expectedly have a broad distribution [10], which,
in connection with a finite sampling time creates a nega-
tive sampling bias on large tq values [11], even with the
quakes unambiguously identified. Secondly, correlations
may well be present between large and closely spaced
spikes in the signal which collectively represent a change
of attractor. Last but not least, identification of the tq’s
within a trace must rely on the negative sign of the fluctua-
tions and on their ‘sufficiently large’ size. I.e. by definition
sufficient energy must be released to make the reverse pro-
cess highly unprobable within an observation span stretch-
ing up to 2t for a quake which occurs at t [10]. A related
and generic property of aging systems (also directly ac-
cessible by an intermittency analysis [8]) is that reversible
equilibrium-like fluctuations dominate the dynamics on
time scales shorter than the age t. A simple empirical
criterion for distinguishing reversible fluctuations from ir-
reversible quakes uses an upper bound on the probabil-
ity, Prev(t, δE), that at least one thermal energy fluctua-
tion of positive sign be among t/δt observations. For small
exp(−δE/T ), Prev(t, δE) ≈ t/δtc exp(−δE/T ), where the
positive number c is unknown. A negative energy fluctua-
tion is labeled as a quake if its absolute value |δE| satisfies
Prev(t, |δE|) < 10−n, where n is a positive number. For a
thermal fluctuation which occurs at age t, this criterion
produces the inequality

|δE|quake

T
> f + log t; where f = n ln(10) + ln(c/δt).

(2)
The formal definition of the ‘filter’ parameter f on the
right hand side of the inequality contains the unknown
parameter c as well as a free parameter n. We must there-
fore treat f as a free parameter regulating how strict a
filter the fluctuations must pass to qualify as quakes.
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Fig. 3. (Color on line) For eight different temperatures T =
0.2, 0.3 . . . 0.9 (circles, dots, squares, plusses, diamonds, stars,
pentagrams, and hexagrams) the estimated cumulative prob-
ability Prob(log tq/tq−1 > x) is plotted versus x, with tq,
q = 1, 2 . . . denoting the times at which the quakes occur. The
quakes are identified as described in the main text using the
filtering parameter value f = 7. The dotted lines are fits to
the exponential exp(−αx). The collapse of the eight data sets
demonstrates that the temperature dependence is very weak,
except at the lowest T . In the insert, the fitted α values are
plotted versus T . The circles pertain to the data shown in the
main plot, and the squares pertain to corresponding data ob-
tained using f = 8 as a filter parameter.

For temperatures T = 0.2, 0.3 . . .0.9, a range span-
ning most of the EA spin-glass phase, simulations were
performed in the interval t ∈ (200, 10200). Within each
trajectory, quakes are identified by applying equation (2),
and the quantities τq = log(tq/tq−1) are calculated and
binned. The procedure is repeated for 2000 independent
trajectories for each value of the temperature. The mag-
netic field H = 0.1 for t > tw = 200 and zero other-
wise, is the same as in all other simulations. Note that,
as also demonstrated by Figure 4, the magnetic field has
no discernible effects on the energy statistics. The stan-
dard deviation, σ(i), of the empirical probability of a point
falling in the i’th bin is σ(i) =

√
(pth(i)/Nobs), where

pth(i) is the corresponding (unknown) theoretical proba-
bility. Nobs is the number of τq values collected. Replacing
pth with the corresponding empirical probability, yields
an estimate for σ(i). The empirical cumulative distribu-
tion Prob(τq = log(tq/tq−1) > x) is fitted to the exponen-
tial beαx, with fit parameters obtained by mimizing the
sum of the square differences to the data points, each
weighted by the reciprocal of the (estimated) variance of
the data point. The prefactor b has no physical signifi-
cance. It would be unity, where not for the fact that the
lowest x value, for which the ordinate is equal to one,
is located at half bin size, rather than at zero. To check
the influence of f on the form of the distribution, all the
simulations were done twice, using the values f = 7 and
f = 8. The results shown in the main panel of Figure 3
pertain to the f = 7 case. The results for f = 8 are
very similar, i.e. both cases produce an exponential dis-
tribution. The scale parameter α lacks any significant T
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Fig. 4. (Color on line) The first five panels depict, for the temperatures indicated, scaling plots of the energy per spin, with
the constant εG, subtracted. The values of t range from t = tw to 400tw , with tw = 50, 100, 200, 500 and 1000, (green, blue,
magenta, black, and red circles respectively). The black line is a fit to equation (4). The value of tw is irrelevant for the energy
decay. The last panel shows the T dependence of the parameters of equation (4) on the reduced temperature T/Tc.

dependence, except for the lowest temperature, and seems
only weakly f dependent. From the statistics, the number
of domains can be estimated as α ≈ 20. Dividing the total
number of spins by α an order of magnitude estimate is
obtained for the number of spins in a thermalized domain.
The corresponding linear size comes out around 6 spins, a
figures which compares well to the range of domain sizes
observed in domain growth studies of the EA model [23].
The scale invariance of the energy landscape implicit in
the T independence of α is to a large degree confirmed.

It is expected that the largest deviations be found at the
lowest temperatures, where the discreteness of the energy
spectrum begins to make itself felt.

3.3 Average energy and linear response

The drift of the average energy µe and average magnetiza-
tion µZFCM was seen to mainly depend on the number of
quakes nI which fall in the relevant observation interval.
For an interval (t, t′) this number was shown to have a
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Poisson distribution with average

〈nI〉 = α ln(t/t′). (3)

For a final check of the applicability of record dynamics we
now compare available analytic formulas [13,16] for the av-
erage energy, magnetic response and magnetic correlation
function to the spin glass data. The subordination hypoth-
esis used to derive the formulas fully neglects the effects
of pseudo-equilibrium fluctuations. Then, all observables
have a rather simple and generic nI dependence — a su-
perposition of exponential functions. Averaging over the
distribution of nI produces a superposition of power-laws
terms, some of which can be further expanded into a log-
arithmic and a constant term. The independent variables
are t and t/tw for the energy and the magnetization, re-
spectively, since all quakes contribute to the energy decay,
while only those falling between tw and t contribute to the
response.

Because pseudo-equilibrium fluctuations are excluded,
deviations between predicted and observed behavior are
to be expected. Indeed, as discussed later, the linear re-
sponse. data have a small additive tw dependence which
is beyond the reach of the description and which is in
most studies explicitly split off as a ‘stationary contribu-
tion [25].

The average energy and linear response are calculated
using 4000 independent trajectories. The average energy
µe(t) is found to decay toward an (apparent) asymptotic
limit εG, according to the power-law

µe(t) − εG = aet
λe . (4)

In the first five panels of Figure 4, the full line corre-
sponds to equation (4) and the symbols are empirical
estimates of the average energy. Each panel shows data
obtained at the temperature indicated. For each T , the
five data sets displayed are for tw = 50, 100, 200, 500 and
1000 (green, blue, magenta, black and red, respectively).
The lack of a visible tw dependence shows that the mag-
netic contribution to the energy is negligible, as expected.
The last panel of Figure 4 summarizes the dependence
of εG and of the decay exponent λe on the reduced tem-
perature T/Tc. The estimate Tc = 0.98 [30] is used for
the critical temperature of the EA model. Interestingly,
the fitted value of εG is nearly independent of T , and
is close to the estimated ground state energy of the EA
model, [31] eG = −1.7003 ± 0.008. Equation (4) concurs
with the observation that a ‘putative’ ground state en-
ergy of complex optimization problems can be guessed at
early times [32,33]. The prefactor ae has a negligible T de-
pendence. In contrast, the exponent λe has a clear linear
dependence λe = −0.05− 0.38T/Tc.

For λe ln t < 1, the average energy decay is logarith-
mic, µe(t) ≈ εG + ae + aeλe ln(t) . . ., and the decay rate
falls off as the inverse of the age [8,15]. The coefficient
aeλe, which receives its temperature dependence from λe,
is proportional to the average size of a quake [15]. Even
though quakes are strongly exothermic, their average size
may slightly increase with T . This effect of thermal ac-
tivation on the size of quakes is analyzed (for a different
model) in reference [15].

An excellent parameterization of the average ZFCM
time dependence is given by

µZFCM (t/tw) = b0 + am ln
(

t

tw

)
+ bm

(
t

tw

)λm

. (5)

In the theory, the left-hand side should only depend on
t/tw, i.e. b0 should be constant. However, a small tw de-
pendent term, the well known stationary part of the re-
sponse, is present. To be able to nevertheless plot the data
versus t/tw we shift them vertically in a tw dependent fash-
ion, i.e. we subtract the stationary term. The magnitude
of the shift increases with tw and with T , reaching, at its
highest, approximately 15% of the value of b0 which fits
the tw = 50 data.

The first five panels of Figure 5 show the average
ZFCM (dots) and the corresponding fits (lines) as a func-
tion of t/tw, for tw = 50, 100, 200, 500 and 1000. The sim-
ulation temperature used is indicated in each case. Sets of
data corresponding to different tw values are color coded
as done for the average energy. The black line is given
by equation (5), with its three parameters determined by
least square fits. The field switch at tw has a ‘transient’
effect described by the power-law decay term: When t/tw
is sufficiently large, the ZFCM increases proportionally to
ln(t/tw), and hence at a rate decreasing as am/t. In the
last panel of Figure 5, the decay exponent λm and the con-
stants am and bm are plotted versus T . The full line shows
the linear fit −λm = 1.10+ 0.33T/Tc, the dotted lines are
guides to the eye. Importantly, the constant of propor-
tionality am is practically independent of T , a property
also shared by ae. This strongly indicates that the loga-
rithmic rate of quakes, α (see Eq. (3)) must similarly be
T independent.

The derivative of µZFCM with respect to the logarithm
of the observation time, the so-called ‘relaxation rate’, can
be written as

S(tw, t) = (t − tw)
∂µZFCM

∂t
= (t − tw)rZFCM , (6)

where rZFCM is the rate of magnetization increase. The
plots of S versus the observation time tobs = t − tw are
produced via equations (5) and (6) and displayed in the
inserts of the first five panels of Figure 5. One recognizes
the characteristic peak at tobs = tw [22,34]. The limit-
ing value for t � tw is am, i.e. precisely the asymptotic
logarithmic rate of increase of the ZFC magnetization.

The sum of the TRM and ZFCM is the field cooled
magnetization (FCM). Unlike the ZFCM, both FCM and
TRM have a a non-linear H dependence [34]. The latter
does not seem to affect the intermittent behavior, at least
if numerical simulation data and experimental data can
be treated on the same footing: experimental TRM decay
data [16] have the same general behavior as the ZFCM
data just discussed. However two power-law terms, rather
than one, are needed to describe the, more complex, ex-
perimental transient. The exponents have ranges similar
to λm, and a somewhat stronger variation with T . The
large t/tw asymptotic behavior is a logarithmic decay,
a ln(t/tw), where, importantly, the coefficient of propor-
tionality a is T independent, except for T very close to
Tg.
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Fig. 5. (Color on line) The first five panels display, for the temperatures indicated, scaling plots of the magnetization with
a small tw dependent quantity b(tw) added. The abscissa is t/tw, with tw equal to 50, 100, 200, 500 and 1000. The values of t
range from t = tw to t = 400tw . The data are fitted to the sum of a logarithm and a power-law (see Eq. (5)). In the inserts, the
relaxation rate S is plotted versus the observation time t − tw. The values of S are obtained by applying equation (6) to the
fitted functional form for µZF CM given in equation (5). The last panel shows the dependence of the parameters of equation (5)
on the reduced temperature T/Tc. The negative of λm is plotted for graphical reasons.

With an eye to the following discussion, we recall that
the average configuration autocorrelation function of the
EA model, normalized to unity at t = tw, decays between
times tw and t as

µC(t/tw) = (t/tw)λc ; t ≥ tw, (7)

where the exponent can be fitted to the linear T depen-
dence λc(T ) = −0.25T/Tc [13]. The algebraic decay fol-
lows from record dynamics arguments which neglect the
effect of quasi-equilibrium fluctuations for t ≈ tw. Further-
more, they fail near the final equilibration stages. Note
that in the notation of reference [13] the ratio t/tw is writ-
ten as 1 + t/tw.
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4 Discussion and conclusions

In this and a series of preceding papers [8,10,12,13,15,16],
we have argued that non-equilibrium events, the quakes,
are key elements of intermittency and non-equilibrium ag-
ing. The approach takes irreversibility into account at
the microscopic level, stressing that thermal properties
alone, e.g. free energies, are inadequate to explain non-
equilibrium aging. These properties remain nevertheless
important in the description, since the record sized (pos-
itive) energy fluctuations which are assumed to trigger
the quakes are drawn from an equilibrium distribution.
As earlier discussed [15], the energy landscape of each do-
main must be self-similar in order to support a scale in-
variant statistics of record fluctuations. In this optics, the
scale invariance of the ‘local’ energy landscape attached to
each domain, rather than the scale invariance of real space
excitations, is at the root the slow relaxation behavior of
aging systems [35–37].

A different approach to non-equilibrium aging consid-
ers a generalization of the Fluctuation Dissipation The-
orem (FDT) [26,38–40]. Its relation to record-dynamics
is briefly considered below. Out of equilibrium, the FDT
is never fulfilled exactly [41], nor is it generally pos-
sible to write the linear response as a function of the
conjugate autocorrelation alone. Nevertheless, for time
scales t − tw � tw, the drift part of aging dynamics is
negligible, and the FDT does, in practice, apply [27].
As mentioned, conjugate response and autocorrelation
functions are naturally divided into stationary and non-
stationary parts, which pertain to the pseudo-equilibrium
and off-equilibrium aging regimes, respectively. Adopting
the standard notation C for the correlation and R for the
magnetic response, the FDT reads (1−C(t))/T = R(t)/H .
For equilibrium data, a plot of C versus χ = R/H yields
a straight line with slope −1/T . For aging data, the
same plot produces a straight line in the quasi-equilibrium
regime, e.g. at early times where C is close to one. Accord-
ingly, a measure of the deviation from quasi-equilibrium
is the Fluctuation Dissipation ratio (FDR) [38], which
is defined as X(C) = −Tdχ(C)/dC. In the case of the
EA model, the relation lnC = λc log(t/tw), which follows
from inverting equation (7), can be used to find χ(C) and
to calculate X(C). The latter is nowhere a linear func-
tion of C, which is expected, as the stationary fluctua-
tion regime is excluded from the description. The effec-
tive temperature [40] is usually defined from the large t
and tw asymptotic limit of the Fluctuation Dissipation ra-
tio. Effective temperatures may depend on the choice of
conjugate observables [40], and are not easily measured
experimentally [4,39], but offer nevertheless a simple and
appealing characterization of aging dynamics.

In a record-dynamics context, fluctuation-dissipation
like relations arise out of equilibrium because correlation
and response are both subordinated to the same quakes.
Due to the monotonicity of their t/tw dependencies, each
of the two can can be written as a function of the other,
and a FDR can thus be constructed. Asymptotically, both
correlation and response may have an approximate loga-
rithmic dependence on t/tw: from equation (5), we see that

R(t/tw) ≈ am ln(t/tw) for t/tw � 1. Considering that λc

vanishes for T → 0, we also obtain, for the same range
of t/tw values, the inequality |λc(T )| ln(t/tw) < 1. When
the inequality is fulfilled, equation (7) can be written as
1 − C(t/tw) ≈ −λc(T ) ln(t/tw) ∝ R(t/tw). A relation for-
mally similar to the FDT holds, with T replaced by

Teff =
−λcH

am
=

T

4Tc(am/H)
. (8)

As am ∝ H , there is of course no H dependence. Im-
portantly, Teff ∝ T , as am is independent of T . For the
parameter values obtained from the fits, Teff > T , even
though a general argument to support the inequality is
lacking at the moment.

The approach used in this paper and in reference [16]
should be generally applicable to check for the presence of
record-dynamics features in intermittent fluctuation data.
Clearly the ability to perform calorimetry experiments is
essential to directly check the temporal statistics of the
quakes. In the absence of such data, one may assume that
quakes produce large intermittent changes in other ob-
servables, and use their statistics instead.
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